
lgbn

Elias Hernandis

Jun 05, 2022

CONTENTS:

1 API Reference 1
1.1 Estimators . 1
1.2 Models . 5
1.3 Scores . 8

2 Indices and tables 9

Python Module Index 11

Index 13

i

ii

CHAPTER

ONE

API REFERENCE

1.1 Estimators

class lgbn.estimators.GreedyEquivalentSearch(score=None, max_iter=1000000, eps=1e-09)
Greedy Equivalent Search structure learning algorithm.

The Greedy Equivalent algorithm learns the structure of a Bayesian network that maximizes the given score. The
search procedure starts with an empty graph. Edges are added until no more increase the score and then removed
until no further operation increases the score. Equality of operations and thus networks is defined by equivalence
classes. An equivalence class contains all networks which have the same edges regardless of orientation. This
algorithm is reasonably fast when used with a decomposable score which can be cached.

See3 for a detailed description of the Greedy Equivalent Search algorithm.

Note: This implementation requires a decomposable score, although there exist other implementations that
work with non-decomposable scores.

References

get_params(deep=True)
Get parameters for this estimator.

Parameters
deep (bool, default=True) – If True, will return the parameters for this estimator and
contained subobjects that are estimators.

Returns
params – Parameter names mapped to their values.

Return type
dict

search()

Search the space of posible models for the one that maximizes the score of this estimator.

set_params(**kwargs)
Set the parameters of this estimator.

3 D. M. Chickering, “Optimal Structure Identification With Greedy Search,” Journal of Machine Learning Research, vol. 3, no. Nov 2002, p.
48, Nov. 2002.

1

lgbn

The method works on simple estimators as well as on nested objects (such as Pipeline). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component of a
nested object.

Parameters
**params (dict) – Estimator parameters.

Returns
self – Estimator instance.

Return type
estimator instance

class lgbn.estimators.GreedyHillClimbing(score=None, start_net=None, max_iter=1000000, eps=1e-09,
random_state=None)

Greedy Hill Climbing structure search algorithm.

The Greedy Hill Climbing algorithm learns the structure of a Bayesian network that maximizes the given score.
The search procedure starts with an initial network, which defaults to a fully disconnected network. Edges are
added, removed or have their direction reversed one at a time until no more modifications increase the overall
score of the network. This algorithm is reasonably fast when used with a decomposable score which can be
cached.

See p. 40 in2 for a detailed description of the Greedy Hill Climbing algorithm. The source refers to Greedy Hill
Climbing as Max-Min Hill Climbing.

Note: This implementation requires a decomposable score, although there exist other implementations that
work with non-decomposable scores.

References

get_params(deep=True)
Get parameters for this estimator.

Parameters
deep (bool, default=True) – If True, will return the parameters for this estimator and
contained subobjects that are estimators.

Returns
params – Parameter names mapped to their values.

Return type
dict

search()

Search the space of posible models for the one that maximizes the score of this estimator.

set_params(**kwargs)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as Pipeline). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component of a
nested object.

2 I. Tsamardinos, L. E. Brown, and C. F. Aliferis, “The max-min hill-climbing Bayesian network structure learning algorithm,” Mach Learn, vol.
65, no. 1, pp. 31–78, Oct. 2006, doi: 10.1007/s10994-006-6889-7.

2 Chapter 1. API Reference

lgbn

Parameters
**params (dict) – Estimator parameters.

Returns
self – Estimator instance.

Return type
estimator instance

class lgbn.estimators.K2Search(score=None, ordering=None, eps=1e-09)
K2 structure learning algorithm.

The K2 algorithm learns the structure of a Bayesian network that maximizes the given score. The search pro-
cedure is guided by a given topological ordering of the network. In that ordering, if node x comes before node
y, then node y can never be a parent of node x. This vastly reduces the search space resulting in a significant
speedup, even without using caching.

See1 for a detailed description of the K2 algorithm.

Note: This implementation requires a decomposable score, although there exist other implementations that
work with non-decomposable scores.

References

get_params(deep=True)
Get parameters for this estimator.

Parameters
deep (bool, default=True) – If True, will return the parameters for this estimator and
contained subobjects that are estimators.

Returns
params – Parameter names mapped to their values.

Return type
dict

search()

Search the space of posible models for the one that maximizes the score of this estimator.

set_params(**kwargs)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as Pipeline). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component of a
nested object.

Parameters
**params (dict) – Estimator parameters.

Returns
self – Estimator instance.

Return type
estimator instance

1 G. F. Cooper and E. Herskovits, “A Bayesian method for the induction of probabilistic networks from data,” Mach Learn, vol. 9, no. 4, pp.
309–347, Oct. 1992, doi: 10.1007/BF00994110.

1.1. Estimators 3

lgbn

class lgbn.estimators.ScoreSearchEstimator(score=None, eps=1e-09)
A structure estimator using score-based search.

Note: This class is just a general interface, it cannot actually be used.

See also:

K2Search , GreedyHillClimbing, GreedyEquivalentSearch

eps: float = 1e-09

Tolerance for equality testing of numeric values. Two values a and b are equal if abs(a - b) < eps.

fit(data)
Fit the model to the given data.

Parameters
data (pandas.DataFrame) – A DataFrame with one row per observation and one column
per variable. Column names will be used for node identifiers in the resulting model.

Return type
A fitted estimator (self).

get_params(deep=True)
Get parameters for this estimator.

Parameters
deep (bool, default=True) – If True, will return the parameters for this estimator and
contained subobjects that are estimators.

Returns
params – Parameter names mapped to their values.

Return type
dict

model: BayesianNetwork = None

The model resulting from the estimation.

property score

Score instance to use for scoring networks in the search procedure.

search()→ BayesianNetwork
Search the space of posible models for the one that maximizes the score of this estimator.

set_params(**kwargs)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as Pipeline). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component of a
nested object.

Parameters
**params (dict) – Estimator parameters.

Returns
self – Estimator instance.

Return type
estimator instance

4 Chapter 1. API Reference

lgbn

1.2 Models

class lgbn.models.BayesianNetwork

A Bayesian Network.

A Bayesian network is a directed acyclic graph where each node is a random variable with a distribution condi-
tional on the parent nodes.

add_cpd(cpd: CPD)→ None
Add a conditional probability distribution to the network.

Note: Also adds the node and edges to the underlying networkx.DiGraph. If there already is a conditional
probability distribution it is replaced and new edges are added, but previous edges not present in the new
distribution will not be removed.

Parameters
cpd (CPD) – A conditional probability distribution

apply_op(op)
Modify the network according to the given operation.

An operation is an edge together with an action (add edge, remove edge, flip edge).

Parameters
op – A tuple (action, (u, v)) where action is one of +, - or F and (u, v) is an edge.

Raises

• NotImplementedError – If the given action is not supported.

• ValueError – If the edge is not in the network and operation requires editing it. (This is
actually raised by networkx.DiGraph.remove_edge.)

cpd_class

The class used to instantiated CPDs when loading from a dict via .from_dict(data).

alias of CPD

cpds

A dictionary mapping node identifiers to Conditional Probability Distributions.

alias of Dict[Any, CPD]

classmethod from_dict(data)
Load Bayesian network from a dict.

Parameters
data (Sequence[Dict[str, Any]]) – A list of dictionaries corresponding to CPDs. See
CPD.to_dict for more information on the format.

See also:

to_dict, CPD.from_dict

1.2. Models 5

lgbn

Notes

This method expects the data to be sorted by node in topological order, so that a node always comes before
its children. This is the way to_dict generates dictionaries.

to_dict()

Serializes the Bayesian network into a list of dictionaries.

Each dictionary is the result of serializing a CPD via CPD.to_dict.

update_cpds_from_structure()→ None
Updates the parents attribute in each CPD to match the current graph structure.

Tip: Use this method after updating the network structure (e.g. via learning).

class lgbn.models.CPD(node: Any, parents: Optional[tuple[Any]] = None)
A conditional probability distribution for a node.which also references the node’s parents.s

In a BayesianNetwork the probability distributions of the nodes are specified via CPDs or Conditional Probability
distributions. These classes represent the probability distributions of the random variables in the nodes of a
Bayesian network, which in general are conditioned on the parent nodes.

Note: This is a base class which cannot actually be used.

See also:

LinearGaussianCPD
A conditional probability distribution for linear Gaussian Bayesian networks.

classmethod from_dict(data: Dict[str, Any])
Loads this conditional probability distribution from a dict.

to_dict()→ Dict[str, Any]
Serializes this conditional probability distribution into a dict.

class lgbn.models.LinearGaussianBayesianNetwork

A Bayesian network where every node has a Gaussian distribution, where the mean of each node is a linear
combination of its parents plus a bias factor and the standard deviations of the nodes are independent.

The joint distribution of these networks also a Gaussian distribution, the parameters of which can be obtained
via the to_joint_gaussian method.

cpd_class

alias of LinearGaussianCPD

to_joint_gaussian()

Get the equivalent multivariate Gaussian distribution to this Bayesian network.

Returns a scipy.stats.multivariate_normal frozen random variable which has attributes mean (vector of
means) and cov (covariance matrix).

Returns
A frozen random variable.

Return type
scipy.stats.multivariate_normal

6 Chapter 1. API Reference

lgbn

Notes

Linear Gaussian Bayesian networks have a joint probability distribution that is also normal, and thus this
method is well defined. See p. 252 of1 and pp. 370-371 of2.

References

class lgbn.models.LinearGaussianCPD(node: Any, mean: Optional[float] = 0, var: Optional[float] = 1,
parents: Optional[tuple[Any]] = None, weights:
Optional[tuple[float]] = None)

A linear Gaussian conditional probability distribution.

A linear Gaussian conditional probability distribution is normal distribution where the mean is a linear combi-
nation of the means of the parent nodes plus a bias term, i.e. if this node (X) has parents 𝑈1, . . . , 𝑈𝑘 then

𝑝(𝑋) = 𝑁(𝑋 | 𝜇+ 𝑤1𝜇𝑈1
+ . . .+ 𝑤𝑘𝜇𝑈𝑘

, 𝜎2),

where 𝜇 is specified via the mean parameter, 𝜎2 via the var parameter and 𝑤1, . . . , 𝑤𝑘 via the weights parameter.

mle(data: DataFrame)
Find maximum likelihood estimate for mean, variance and weights given the data and the dependencies on
the parents.

Parameters
data (pandas.DataFrame) – A DataFrame with one row per observation and one column
per variable.

Returns
A new conditional probability distribution where the parameters are set to the ML estimates.

Return type
LinearGaussianCPD

Notes

Maximum likelihood estimation of parameters is computed using the sufficient statistics approach described
in section 17.2.4 of1.

References

to_dict()

Serializes this conditional probability distribution into a dict.
1 D. Koller and N. Friedman, Probabilistic graphical models: principles and techniques. Cambridge, MA: MIT Press, 2009.
2 C. M. Bishop, Pattern recognition and machine learning. New York: Springer, 2006.

1.2. Models 7

lgbn

1.3 Scores

class lgbn.scores.BICScore(data)
The Bayesian Information Criterion score of a network is the LogLikScore of that network minus a regularization
penalty proportional to the size of the data and the complexity of the network.

This score is decomposable and thus takes advantage of caching.

For a complete description of the BIC score see1 section 18.3.5.

References

data: DataFrame

A Pandas DataFrame with one row per observation and one column per variable.

class lgbn.scores.BaseScore(data: DataFrame)
The base class for network scores.

A score is a class that takes an argument data on initialization and that implements a score(network) method that
when given a network returns a real number.

This base class also stubs the implementation for a decomposable score, where the .score(network) function can
be obtained by summing the .score_fam(node, parent) method over the nodes in a network.

data: DataFrame

A Pandas DataFrame with one row per observation and one column per variable.

score(net: BayesianNetwork)
A default implementation for decomposable scores where the score of a network is the sum of the scores
of each family (i.e. the set of a node and its parents).

class lgbn.scores.LogLikScore(data: DataFrame)
The LogLik score of a network is the (natural) logarithm of the maximum likelihood of the data given the network
as estimated by net.mle().

This score is decomposable and thus takes advantage of caching.

See section 18.3.1 ofPage 8, 1 for a more in-depth discussion of the log likelihood score.

data: DataFrame

A Pandas DataFrame with one row per observation and one column per variable.

1 D. Koller and N. Friedman, Probabilistic graphical models: principles and techniques. Cambridge, MA: MIT Press, 2009.

8 Chapter 1. API Reference

CHAPTER

TWO

INDICES AND TABLES

• genindex

• modindex

• search

9

lgbn

10 Chapter 2. Indices and tables

PYTHON MODULE INDEX

l
lgbn.estimators, 1
lgbn.models, 5
lgbn.scores, 8

11

lgbn

12 Python Module Index

INDEX

A
add_cpd() (lgbn.models.BayesianNetwork method), 5
apply_op() (lgbn.models.BayesianNetwork method), 5

B
BaseScore (class in lgbn.scores), 8
BayesianNetwork (class in lgbn.models), 5
BICScore (class in lgbn.scores), 8

C
CPD (class in lgbn.models), 6
cpd_class (lgbn.models.BayesianNetwork attribute), 5
cpd_class (lgbn.models.LinearGaussianBayesianNetwork

attribute), 6
cpds (lgbn.models.BayesianNetwork attribute), 5

D
data (lgbn.scores.BaseScore attribute), 8
data (lgbn.scores.BICScore attribute), 8
data (lgbn.scores.LogLikScore attribute), 8

E
eps (lgbn.estimators.ScoreSearchEstimator attribute), 4

F
fit() (lgbn.estimators.ScoreSearchEstimator method), 4
from_dict() (lgbn.models.BayesianNetwork class

method), 5
from_dict() (lgbn.models.CPD class method), 6

G
get_params() (lgbn.estimators.GreedyEquivalentSearch

method), 1
get_params() (lgbn.estimators.GreedyHillClimbing

method), 2
get_params() (lgbn.estimators.K2Search method), 3
get_params() (lgbn.estimators.ScoreSearchEstimator

method), 4
GreedyEquivalentSearch (class in lgbn.estimators), 1
GreedyHillClimbing (class in lgbn.estimators), 2

K
K2Search (class in lgbn.estimators), 3

L
lgbn.estimators

module, 1
lgbn.models

module, 5
lgbn.scores

module, 8
LinearGaussianBayesianNetwork (class in

lgbn.models), 6
LinearGaussianCPD (class in lgbn.models), 7
LogLikScore (class in lgbn.scores), 8

M
mle() (lgbn.models.LinearGaussianCPD method), 7
model (lgbn.estimators.ScoreSearchEstimator attribute),

4
module

lgbn.estimators, 1
lgbn.models, 5
lgbn.scores, 8

S
score (lgbn.estimators.ScoreSearchEstimator property),

4
score() (lgbn.scores.BaseScore method), 8
ScoreSearchEstimator (class in lgbn.estimators), 3
search() (lgbn.estimators.GreedyEquivalentSearch

method), 1
search() (lgbn.estimators.GreedyHillClimbing

method), 2
search() (lgbn.estimators.K2Search method), 3
search() (lgbn.estimators.ScoreSearchEstimator

method), 4
set_params() (lgbn.estimators.GreedyEquivalentSearch

method), 1
set_params() (lgbn.estimators.GreedyHillClimbing

method), 2
set_params() (lgbn.estimators.K2Search method), 3

13

lgbn

set_params() (lgbn.estimators.ScoreSearchEstimator
method), 4

T
to_dict() (lgbn.models.BayesianNetwork method), 6
to_dict() (lgbn.models.CPD method), 6
to_dict() (lgbn.models.LinearGaussianCPD method),

7
to_joint_gaussian()

(lgbn.models.LinearGaussianBayesianNetwork
method), 6

U
update_cpds_from_structure()

(lgbn.models.BayesianNetwork method),
6

14 Index

	API Reference
	Estimators
	Models
	Scores

	Indices and tables
	Python Module Index
	Index

